Blockstructured Adaptive Mesh Refinement in object-oriented C++
c c c ========================================================== subroutine dimsp2(maxm,maxmx,maxmy,mvar,meqn,maux,mwaves,mbc, & mx,my,qold,aux,dx,dy,dt,method,mthlim,cfl, & fm,fp,gm,gp,faddm,faddp,gaddm,gaddp, & q1d,dtdx1d,dtdy1d,aux1,aux2,aux3, & work,mwork,rpn2,rpt2) c ========================================================== c c # Take one time step, updating qold, using dimensional splitting. c # c # method(3) < 0 gives Godunov splitting: c # time step dt in x-direction c # time step dt in y-direction c c # The common variable mpass>0 allows the update of a single direction. c # This is necessary for method(3) = -2. This setting forces AMROC to c # sychronize the ghost cells after each directional sweep. c # While method(3) = -1 and method(3) = -2 give identical results on a c # single node, method(3) = -2 should always be used for parallel c # execution. c c # See the flux2 documentation for more information. c implicit double precision (a-h,o-z) include "call.i" c dimension qold(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc) dimension fm(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc) dimension fp(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc) dimension gm(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc) dimension gp(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc) dimension q1d(1-mbc:maxm+mbc, meqn) dimension faddm(1-mbc:maxm+mbc, meqn) dimension faddp(1-mbc:maxm+mbc, meqn) dimension gaddm(1-mbc:maxm+mbc, meqn, 2) dimension gaddp(1-mbc:maxm+mbc, meqn, 2) dimension aux(maux, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc) dimension aux1(1-mbc:maxm+mbc, maux) dimension aux2(1-mbc:maxm+mbc, maux) dimension aux3(1-mbc:maxm+mbc, maux) dimension dtdx1d(1-mbc:maxm+mbc) dimension dtdy1d(1-mbc:maxm+mbc) dimension method(7),mthlim(mwaves) dimension work(mwork) external rpn2,rpt2 c mcapa = method(6) c do 10 j=1-mbc,my+mbc do 10 i=1-mbc,mx+mbc do 10 m=1,mvar fm(m,i,j) = 0.d0 fp(m,i,j) = 0.d0 gm(m,i,j) = 0.d0 gp(m,i,j) = 0.d0 10 continue c cfl = 0.d0 dtdx = dt/dx dtdy = dt/dy c if (mpass.eq.0.or.mpass.eq.1) then c c # Take a full time step in x-direction c call step2ds(maxm,maxmx,maxmy,mvar,meqn,maux,mwaves,mbc,mx,my, & qold,aux,dx,dy,dt,method,mthlim,cflx, & fm,fp,gm,gp,faddm,faddp,gaddm,gaddp, & q1d,dtdx1d,dtdy1d,aux1,aux2,aux3, & work,mwork,rpn2,rpt2,1) cfl = cflx c do 110 j=1,my do 110 i=1,mx do 110 m=1,meqn if (mcapa.gt.0) then qold(m,i,j) = qold(m,i,j) & - dtdx * (fm(m,i+1,j) - fp(m,i,j)) / & aux(mcapa,i,j) c # no capa array. Standard flux differencing: else qold(m,i,j) = qold(m,i,j) & - dtdx * (fm(m,i+1,j) - fp(m,i,j)) endif 110 continue c endif c if (mpass.eq.0.or.mpass.eq.2) then c c # Take full step in y-direction c call step2ds(maxm,maxmx,maxmy,mvar,meqn,maux,mwaves,mbc,mx,my, & qold,aux,dx,dy,dt,method,mthlim,cfly, & fm,fp,gm,gp,faddm,faddp,gaddm,gaddp, & q1d,dtdx1d,dtdy1d,aux1,aux2,aux3, & work,mwork,rpn2,rpt2,2) cfl = cfly c do 120 j=1,my do 120 i=1,mx do 120 m=1,meqn if (mcapa.gt.0) then qold(m,i,j) = qold(m,i,j) & - dtdy * (gm(m,i,j+1) - gp(m,i,j)) / & aux(mcapa,i,j) c # no capa array. Standard flux differencing: else qold(m,i,j) = qold(m,i,j) & - dtdy * (gm(m,i,j+1) - gp(m,i,j)) endif 120 continue c endif c if (mpass.eq.0) cfl = dmax1(cflx,cfly) c return end
Quickstart Users Guide Programmers Reference Installation Examples Download
AMROC Main Home Contactlast update: 06/01/04