AMROC Main     Blockstructured Adaptive Mesh Refinement in object-oriented C++


Main Page   Class Hierarchy   Compound List   File List  

1d/equations/euler/rp/rp1euausmdvg.f

c
c
c =========================================================
      subroutine rp1eu(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
     &     auxl,auxr,wave,s,fl,fr)
c =========================================================
c
c     # solve Riemann problems for the 1D Euler equations using 
c     # an improved version of the Liou-Steffen Flux-Vector-Splitting 
c   
c     # Yasuhiro Wada, Meng-Sing Liou "An accurate and robust flux
c     # splitting scheme for shock and contact discontinuities",
c     # SIAM J. Sci. Comput., Vol. 18, No.2, pp 633-657, May 1997.
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c     # On output, wave contains the waves, 
c     #            s the speeds, fl and fr the positive and negative flux.
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic routine step1, rp is called with ql = qr = q.
c
c     Author:  Ralf Deiterding
c
      implicit double precision (a-h,o-z)
      dimension   ql(1-mbc:maxmx+mbc, meqn)
      dimension   qr(1-mbc:maxmx+mbc, meqn)
      dimension    s(1-mbc:maxmx+mbc, mwaves)
      dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
      dimension   fl(1-mbc:maxmx+mbc, meqn)
      dimension   fr(1-mbc:maxmx+mbc, meqn)
      double precision l(3), r(3)
      common /param/  gamma,gamma1
c
c     # Method returns fluxes
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 1
c
      do 10 i=2-mbc,mx+mbc
         rhol = qr(i-1,1)
         rhor = ql(i  ,1)
         ul = qr(i-1,2)/rhol
         ur = ql(i  ,2)/rhor
	 pl = gamma1*(qr(i-1,3) - 0.5d0*ul**2*rhol)
	 pr = gamma1*(ql(i  ,3) - 0.5d0*ur**2*rhor)
         Hl = (qr(i-1,3)+pl)/rhol
         Hr = (ql(i  ,3)+pr)/rhor
         al = dsqrt(gamma*pl/rhol)
         ar = dsqrt(gamma*pr/rhor)
c
         am = dmax1(al,ar)
         alphal = 2.d0*(pl/rhol)/(pl/rhol+pr/rhor)
         alphar = 2.d0*(pr/rhor)/(pl/rhol+pr/rhor)
c
         ulp = 0.5d0*(ul+dabs(ul))
         plp = pl*ulp/ul
         if (dabs(ul).le.am) then
            ulp = 0.25d0*alphal*(ul+al)**2/am + (1.d0-alphal)*ulp
            plp = 0.25d0*pl*(ul+al)**2/am**2*(2.d0-ul/am)
         endif
c
         urm = 0.5d0*(ur-dabs(ur))
         prm = pr*urm/ur
         if (dabs(ur).le.am) then
            urm = -0.25d0*alphar*(ur-ar)**2/am + (1.d0-alphar)*urm
            prm =  0.25d0*pr*(ur-ar)**2/am**2*(2.d0+ur/am)
         endif
c
c     #  Blending between AUSMV and AUSMD 
c     #  sf=1.d0 gives AUSMV, sf=-1.d0 gives AUSMD
         sf = dmin1(1.d0, 10.d0*dabs(pr-pl)/dmin1(pl,pr))
c
         l(1) = 0.5d0*(ulp*rhol+dabs(ulp*rhol))
         l(2) = 0.5d0*((1.d0+sf)*ulp*rhol*ul + (1.d0-sf)*l(1)*ul) + plp
         l(3) = l(1)*Hl
c
         r(1) = 0.5d0*(urm*rhor-dabs(urm*rhor))
         r(2) = 0.5d0*((1.d0+sf)*urm*rhor*ur + (1.d0-sf)*r(1)*ur) + prm
         r(3) = r(1)*Hr
c
         do 20 m = 1,meqn
            fl(i,m) = l(m) + r(m)
            fr(i,m) = -fl(i,m)
 20      continue
c
         s(i,1) = 0.5d0*(ul-al + ur-ar)
         s(i,2) = 0.5d0*(ul    + ur)
         s(i,3) = 0.5d0*(ul+al + ur+ar)
         do 10 mw=1,mwaves
            do 10 m=1,meqn
               wave(i,m,mw) = 0.d0
 10   continue
c
      return
      end
c
c


Quickstart     Users Guide     Programmers Reference     Installation      Examples     Download



AMROC Main      Home      Contact
last update: 06/01/04