AMROC Main     Blockstructured Adaptive Mesh Refinement in object-oriented C++


Main Page   Class Hierarchy   Compound List   File List  

1d/equations/euler/rp/rp1euvlg.f

c
c
c =========================================================
      subroutine rp1eu(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
     &     auxl,auxr,wave,s,fl,fr)
c =========================================================
c
c     # solve Riemann problems for the 1D Euler equations using 
c     # van Leer's Flux-Vector-Splitting 
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c     # On output, wave contains the waves, s the speeds, 
c     # fl and fr the positive and negative flux.
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic clawpack routine step1, rp is called with ql = qr = q.
c
c     Author:  Ralf Deiterding
c
      implicit double precision (a-h,o-z)
      dimension   ql(1-mbc:maxmx+mbc, meqn)
      dimension   qr(1-mbc:maxmx+mbc, meqn)
      dimension    s(1-mbc:maxmx+mbc, mwaves)
      dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
      dimension   fl(1-mbc:maxmx+mbc, meqn)
      dimension   fr(1-mbc:maxmx+mbc, meqn)
      double precision Ml, Mr, sl(3), sr(3), fvl(3), fvr(3)
      common /param/  gamma,gamma1
c
c     # Method returns fluxes
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 1
c
      gamma2 = gamma**2-1
      do 10 i=2-mbc,mx+mbc
         rhol = qr(i-1,1)
         rhor = ql(i  ,1)
         ul = qr(i-1,2)/rhol
         ur = ql(i  ,2)/rhor
         El = qr(i-1,3)/rhol
         Er = ql(i  ,3)/rhor
	 pl = gamma1*(qr(i-1,3) - 0.5d0*(qr(i-1,2)**2)/rhol)
	 pr = gamma1*(ql(i  ,3) - 0.5d0*(ql(i  ,2)**2)/rhor)
         al = dsqrt(gamma*pl/rhol)
         ar = dsqrt(gamma*pr/rhor)
c
         Ml = ul/al
         Mr = ur/ar
c
         sl(1) = ul-al
         sl(2) = ul
         sl(3) = ul+al
         sr(1) = ur-ar
         sr(2) = ur
         sr(3) = ur+ar
c
         if (Ml.gt.1d0) then
            fvl(1) = rhol*ul
            fvl(2) = fvl(1)*ul+pl
            fvl(3) = ul*(rhol*El+pl)
         else if (Ml.lt.-1.d0) then
            do m = 1,meqn
               fvl(m) = 0.d0
            enddo
         else
            fvl(1) = 0.25d0*rhol*al*(Ml+1.d0)**2
            fvl(2) = fvl(1)*2.d0*al/gamma*(0.5d0*gamma1*Ml+1.d0)
            fvl(3) = fvl(1)*2.d0*al**2/gamma2*(0.5d0*gamma1*Ml+1.d0)**2
         endif
c
         if (Mr.lt.-1.d0) then
            fvr(1) = rhor*ur
            fvr(2) = fvr(1)*ur+pr
            fvr(3) = ur*(rhor*Er+pr)
         else if (Mr.gt.1.d0) then
            do m = 1,meqn
               fvr(m) = 0.d0
            enddo
         else
            fvr(1) = -0.25d0*rhor*ar*(Mr-1.d0)**2
            fvr(2) = fvr(1)*2.d0*ar/gamma*(0.5d0*gamma1*Mr-1.d0)
            fvr(3) = fvr(1)*2.d0*ar**2/gamma2*(0.5d0*gamma1*Mr-1.d0)**2
         endif
c
         do 20 m = 1,meqn
            fl(i,m) = fvl(m) + fvr(m)
            fr(i,m) = -fl(i,m)
 20      continue
c
         if (dabs(Ml).lt.1.d0) then
            facl = (gamma+3.d0)/(2.d0*gamma+dabs(Ml)*(3.d0-gamma))
         else
            facl = 1.d0
         endif
         if (dabs(Mr).lt.1.d0) then
            facr = (gamma+3.d0)/(2.d0*gamma+dabs(Mr)*(3.d0-gamma))
         else
            facr = 1.d0
         endif
c
         do 10 mw=1,mwaves
            s(i,mw) = dmax1(dabs(facl*sl(mw)),dabs(facr*sr(mw)))
            do 10 m=1,meqn
               wave(i,m,mw) = 0.d0
 10   continue
c
      return
      end
c


Quickstart     Users Guide     Programmers Reference     Installation      Examples     Download



AMROC Main      Home      Contact
last update: 06/01/04