AMROC Main     Blockstructured Adaptive Mesh Refinement in object-oriented C++


Main Page   Class Hierarchy   Compound List   File List  

3d/equations/euler/rp/rpn3eu.f

c
c
c
c     ==================================================================
      subroutine rpn3eu(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,
     &			maux,auxl,auxr,wave,s,amdq,apdq)
c     ==================================================================
c
c     # Roe-solver for the 3D Euler equations
c
c     # solve Riemann problems along one slice of data.
c     # This data is along a slice in the x-direction if ixyz=1
c     #                               the y-direction if ixyz=2.
c     #                               the z-direction if ixyz=3.
c
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c
c     # auxl(i,ma,2) contains auxiliary data for cells along this slice,
c     #    where ma=1,maux in the case where maux=method(7) > 0.
c     # auxl(i,ma,1) and auxl(i,ma,3) contain auxiliary data along
c     # neighboring slices that generally aren't needed in the rpn3 routine.
c
c     # On output, wave contains the waves, s the speeds, 
c     # and amdq, apdq the decomposition of the flux difference
c     #   f(qr(i-1)) - f(ql(i))  
c     # into leftgoing and rightgoing parts respectively.
c     # With the Roe solver we have   
c     #    amdq  =  A^- \Delta q    and    apdq  =  A^+ \Delta q
c     # where A is the Roe matrix.  An entropy fix can also be incorporated
c     # into the flux differences.
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic clawpack routines, this routine is called with ql = qr
c
c     Author:  Randall J. LeVeque
c
      implicit double precision (a-h,o-z)
      dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
      dimension    s(1-mbc:maxm+mbc, mwaves)
      dimension   ql(1-mbc:maxm+mbc, meqn)
      dimension   qr(1-mbc:maxm+mbc, meqn)
      dimension amdq(1-mbc:maxm+mbc, meqn)
      dimension apdq(1-mbc:maxm+mbc, meqn)
      dimension auxl(1-mbc:maxm+mbc, maux, 3)
      dimension auxr(1-mbc:maxm+mbc, maux, 3)
c
c     local arrays -- common block comroe is passed to rpt3eu
c                     
c     ------------
      parameter (maxmrp = 1002) !# assumes atmost max(mx,my,mz) = 1000 with mbc=2
      dimension delta(5)
      logical efix
      common /param/  gamma,gamma1
      common /comroe/ u2v2w2(-1:maxmrp),
     &       u(-1:maxmrp),v(-1:maxmrp),w(-1:maxmrp),enth(-1:maxmrp),
     &       a(-1:maxmrp),g1a2(-1:maxmrp),euv(-1:maxmrp) 
c
      data efix /.true./    !# use entropy fix for transonic rarefactions
c
c     # Riemann solver returns flux differences
c     ------------
      common /rpnflx/ mrpnflx
      mrpnflx = 0
c
      if (-1.gt.1-mbc .or. maxmrp .lt. maxm+mbc) then
	 write(6,*) 'need to increase maxmrp in rpA'
	 stop
	 endif
c
c     # set mu to point to  the component of the system that corresponds
c     # to momentum in the direction of this slice, mv and mw to the 
c     # orthogonal momentums:
c
      if(ixyz .eq. 1)then
	  mu = 2
	  mv = 3
          mw = 4
      else if(ixyz .eq. 2)then
	  mu = 3
	  mv = 4
          mw = 2
      else
          mu = 4
          mv = 2
          mw = 3
      endif
c
c
c     # note that notation for u,v, and w reflects assumption that the 
c     # Riemann problems are in the x-direction with u in the normal
c     # direction and v and w in the orthogonal directions, but with the 
c     # above definitions of mu, mv, and mw the routine also works with 
c     # ixyz=2 and ixyz = 3
c     # and returns, for example, f0 as the Godunov flux g0 for the
c     # Riemann problems u_t + g(u)_y = 0 in the y-direction.
c
c
c     # Compute the Roe-averaged variables needed in the Roe solver.
c     # These are stored in the common block comroe since they are
c     # later used in routine rpt3eu to do the transverse wave 
c     # splitting.
c
      do 10 i = 2-mbc, mx+mbc
	 rhsqrtl = dsqrt(qr(i-1,1))
	 rhsqrtr = dsqrt(ql(i,1))
	 pl = gamma1*(qr(i-1,5) - 0.5d0*(qr(i-1,mu)**2 + 
     &		 qr(i-1,mv)**2 + qr(i-1,mw)**2)/qr(i-1,1))
	 pr = gamma1*(ql(i,5) - 0.5d0*(ql(i,mu)**2 + 
     &		 ql(i,mv)**2 + ql(i,mw)**2)/ql(i,1))
	 rhsq2 = rhsqrtl + rhsqrtr
	 u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2
	 v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2
	 w(i) = (qr(i-1,mw)/rhsqrtl + ql(i,mw)/rhsqrtr) / rhsq2
	 enth(i) = (((qr(i-1,5)+pl)/rhsqrtl 
     &		   + (ql(i,5)+pr)/rhsqrtr)) / rhsq2
	 u2v2w2(i) = u(i)**2 + v(i)**2 + w(i)**2
         a2 = gamma1*(enth(i) - .5d0*u2v2w2(i))
         a(i) = dsqrt(a2)
	 g1a2(i) = gamma1 / a2
	 euv(i) = enth(i) - u2v2w2(i) 
   10 continue
c
c
c     # now split the jump in q1d at each interface into waves
c
c     # find a1 thru a5, the coefficients of the 5 eigenvectors:
      do 20 i = 2-mbc, mx+mbc
         delta(1) = ql(i,1) - qr(i-1,1)
         delta(2) = ql(i,mu) - qr(i-1,mu)
         delta(3) = ql(i,mv) - qr(i-1,mv)
         delta(4) = ql(i,mw) - qr(i-1,mw)
         delta(5) = ql(i,5) - qr(i-1,5)
         a4 = g1a2(i) * (euv(i)*delta(1) 
     &      + u(i)*delta(2) + v(i)*delta(3) + w(i)*delta(4) 
     &      - delta(5))
         a2 = delta(3) - v(i)*delta(1)
         a3 = delta(4) - w(i)*delta(1)
         a5 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a4) / (2.d0*a(i))
         a1 = delta(1) - a4 - a5
c
c        # Compute the waves.
c        # Note that the 2-wave, 3-wave and 4-wave travel at the same speed 
c        # and are lumped together in wave(.,.,2).  The 5-wave is then stored 
c        # in wave(.,.,3).
c
         wave(i,1,1)  = a1
         wave(i,mu,1) = a1*(u(i)-a(i))
         wave(i,mv,1) = a1*v(i)
         wave(i,mw,1) = a1*w(i)
         wave(i,5,1)  = a1*(enth(i) - u(i)*a(i))
         s(i,1) = u(i)-a(i)
c
         wave(i,1,2)  = a4
         wave(i,mu,2) = a4*u(i)
         wave(i,mv,2) = a4*v(i)	 	 + a2
         wave(i,mw,2) = a4*w(i)	 	 + a3
         wave(i,5,2)  = a4*0.5d0*u2v2w2(i)  + a2*v(i) + a3*w(i)
         s(i,2) = u(i)
c
         wave(i,1,3)  = a5
         wave(i,mu,3) = a5*(u(i)+a(i))
         wave(i,mv,3) = a5*v(i)
         wave(i,mw,3) = a5*w(i)
         wave(i,5,3)  = a5*(enth(i)+u(i)*a(i))
         s(i,3) = u(i)+a(i)
   20    continue
c
c
c    # compute flux differences amdq and apdq.
c    ---------------------------------------
c
      if (efix) go to 110
c
c     # no entropy fix
c     ----------------
c
c     # amdq = SUM s*wave   over left-going waves
c     # apdq = SUM s*wave   over right-going waves
c
      do 100 m=1,meqn
         do 100 i=2-mbc, mx+mbc
	    amdq(i,m) = 0.d0
	    apdq(i,m) = 0.d0
	    do 90 mws=1,mwaves
	       if (s(i,mws) .lt. 0.d0) then
		   amdq(i,m) = amdq(i,m) + s(i,mws)*wave(i,m,mws)
		 else
		   apdq(i,m) = apdq(i,m) + s(i,mws)*wave(i,m,mws)
		 endif
   90          continue
  100       continue
      go to 900	    
c
c-----------------------------------------------------
c
  110 continue
c
c     # With entropy fix
c     ------------------
c
c    # compute flux differences amdq and apdq.
c    # First compute amdq as sum of s*wave for left going waves.
c    # Incorporate entropy fix by adding a modified fraction of wave
c    # if s should change sign.
c
      do 200 i = 2-mbc, mx+mbc
c
c        # check 1-wave:
c        ---------------
c
	 rhoim1 = qr(i-1,1)
	 pim1 = gamma1*(qr(i-1,5) - 0.5d0*(qr(i-1,mu)**2 
     &           + qr(i-1,mv)**2 + qr(i-1,mw)**2) / rhoim1)
	 cim1 = dsqrt(gamma*pim1/rhoim1)
	 s0 = qr(i-1,mu)/rhoim1 - cim1     !# u-c in left state (cell i-1)
c
c
c        # check for fully supersonic case:
	 if (s0.ge.0.d0 .and. s(i,1).gt.0.d0)then 
c            # everything is right-going
	     do 60 m=1,meqn
		amdq(i,m) = 0.d0
   60           continue
	     go to 200 
	     endif
c
         rho1 = qr(i-1,1) + wave(i,1,1)
         rhou1 = qr(i-1,mu) + wave(i,mu,1)
         rhov1 = qr(i-1,mv) + wave(i,mv,1)
         rhow1 = qr(i-1,mw) + wave(i,mw,1)
         en1 = qr(i-1,5) + wave(i,5,1)
         p1 = gamma1*(en1 - 0.5d0*(rhou1**2 + rhov1**2 + 
     &                rhow1**2)/rho1)
         c1 = dsqrt(gamma*p1/rho1)
         s1 = rhou1/rho1 - c1  !# u-c to right of 1-wave
         if (s0.lt.0.d0 .and. s1.gt.0.d0) then
c            # transonic rarefaction in the 1-wave
	     sfract = s0 * (s1-s(i,1)) / (s1-s0)
	   else if (s(i,1) .lt. 0.d0) then
c	     # 1-wave is leftgoing
	     sfract = s(i,1)
	   else
c	     # 1-wave is rightgoing
             sfract = 0.d0   !# this shouldn't happen since s0 < 0
	   endif
	 do 120 m=1,meqn
	    amdq(i,m) = sfract*wave(i,m,1)
  120       continue
c
c        # check 2-wave:
c        ---------------
c
         if (s(i,2) .ge. 0.d0) go to 200  !# 2-,3- and 4- waves are rightgoing
	 do 140 m=1,meqn
	    amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2)
  140       continue
c
c        # check 3-wave:
c        ---------------
c
	 rhoi = ql(i,1)
	 pi = gamma1*(ql(i,5) - 0.5d0*(ql(i,mu)**2 
     &           + ql(i,mv)**2 + ql(i,mw)**2) / rhoi)
	 ci = dsqrt(gamma*pi/rhoi)
	 s3 = ql(i,mu)/rhoi + ci     !# u+c in right state  (cell i)
c
         rho2 = ql(i,1) - wave(i,1,3)
         rhou2 = ql(i,mu) - wave(i,mu,3)
         rhov2 = ql(i,mv) - wave(i,mv,3)
         rhow2 = ql(i,mw) - wave(i,mw,3)
         en2 = ql(i,5) - wave(i,5,3)
         p2 = gamma1*(en2 - 0.5d0*(rhou2**2 + rhov2**2 +
     &                rhow2**2)/rho2)
         c2 = dsqrt(gamma*p2/rho2)
         s2 = rhou2/rho2 + c2   !# u+c to left of 3-wave
         if (s2 .lt. 0.d0 .and. s3.gt.0.d0 ) then
c            # transonic rarefaction in the 3-wave
	     sfract = s2 * (s3-s(i,3)) / (s3-s2)
	   else if (s(i,3) .lt. 0.d0) then
c            # 3-wave is leftgoing
	     sfract = s(i,3)
	   else 
c            # 3-wave is rightgoing
	     go to 200
	   endif
c
	 do 160 m=1,5
	    amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3)
  160       continue
  200    continue
c
c     # compute the rightgoing flux differences:
c     # df = SUM s*wave   is the total flux difference and apdq = df - amdq
c
      do 220 m=1,meqn
	 do 220 i = 2-mbc, mx+mbc
	    df = 0.d0
	    do 210 mws=1,mwaves
	       df = df + s(i,mws)*wave(i,m,mws)
  210          continue
	    apdq(i,m) = df - amdq(i,m)
  220       continue
c
  900 continue       
      return
      end


Quickstart     Users Guide     Programmers Reference     Installation      Examples     Download



AMROC Main      Home      Contact
last update: 06/01/04