Blockstructured Adaptive Mesh Refinement in object-oriented C++
Explosion in a Box - 3 Grid Levels (density, isosurface at 1.8)
Problem description Results: 3 Levels
t=0 t=0.125 t=0.25
t=0.375 t=0.5
Benchmark
Adaptive computation with 3 grid levels
Task P=1 P=2 P=4 s % s % s % Integration 26392 94.7 12486 84.3 6166 79.3 Flux correction 428 1.5 670 4.5 423 5.4 Boundary setting 233 0.8 1066 7.2 809 10.4 Recomposition 402 1.4 323 2.2 207 2.7 Clustering 165 0.6 93 0.6 52 0.7 Misc. 250 0.9 171 1.2 109 1.5 Total / Parallel Efficiency 27870 100.0 14810 94.1 7766 89.7
Uniform refinement
Task P=1 P=2 P=4 s % s % s % Integration 74957 99.1 16884 80.8 8418 97.7 Flux correction 0 0.0 0 0.0 0 0.0 Boundary setting 15 0.0 105 0.5 41 0.5 Recomposition 0 0.0 0 0.0 0 0.0 Clustering 0 0.0 0 0.0 0 0.0 Misc. 634 0.9 3904 18.7 145 1.8 Total / Parallel Efficiency 75606 100.0 20894 180.9 8604 219.7
In this example large regions of the computational domain require adaption. The mere computational time of an adaptive and a uniformly refined calculation are similar. But, the adaptive computation reduces the memory demands. Therefore, the adaptive computation is much faster on a single node (P=1), but nearly equal times are achieved on four nodes (P=4).
Comparison between adaptive and uniformly refined computation
Quickstart Users Guide Programmers Reference Installation Examples Download
AMROC Main Home Contactlast update: 6/1/04