AMROC Main     Blockstructured Adaptive Mesh Refinement in object-oriented C++


Main Page   Class Hierarchy   Compound List   File List  

3d/integrator_ex/unsp3ex.f

c
c     ==================================================================
      subroutine unsp3(maxm,maxmx,maxmy,maxmz,mvar,meqn,
     &                 maux,mwaves,mbc,mx,my,mz,
     &                 qold,aux,dx,dy,dz,dt,method,mthlim,cfl,
     &                 fm,fp,gm,gp,hm,hp,
     &                 faddm,faddp,gaddm,gaddp,haddm,haddp,
     &                 q1d,dtdx1d,dtdy1d,dtdz1d,
     &                 aux1,aux2,aux3,work,mwork,rpn3,rpt3)
c     ==================================================================
c
c     # Take one time step, updating q with the wave propagation method
c     # of Randall J. LeVeque.
c    
c     # fm, fp are fluxes to left and right of single cell edge,
c     # gm, gp are fluxes at bottom and top,
c     # hm, hp are fluxes at back and front.
c     # fadd, gadd and hadd are used to return flux increments from flux3.
c     # See the flux3 documentation for more information.
c
      implicit double precision (a-h,o-z)
      include  "call.i"
c
      dimension qold(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc, 
     &     1-mbc:maxmz+mbc)
      dimension fm(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc,
     &     1-mbc:maxmz+mbc)
      dimension fp(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc,
     &     1-mbc:maxmz+mbc)
      dimension gm(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc,
     &     1-mbc:maxmz+mbc)
      dimension gp(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc,
     &     1-mbc:maxmz+mbc)
      dimension hm(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc,
     &     1-mbc:maxmz+mbc)
      dimension hp(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc,
     &     1-mbc:maxmz+mbc)
      dimension q1d(1-mbc:maxm+mbc, meqn)
      dimension faddm(1-mbc:maxm+mbc, meqn)
      dimension faddp(1-mbc:maxm+mbc, meqn)
      dimension gaddm(1-mbc:maxm+mbc, meqn, 2, -1:1)
      dimension gaddp(1-mbc:maxm+mbc, meqn, 2, -1:1)
      dimension haddm(1-mbc:maxm+mbc, meqn, 2, -1:1)
      dimension haddp(1-mbc:maxm+mbc, meqn, 2, -1:1)
      dimension aux(maux, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc, 
     &              1-mbc:maxmz+mbc)
      dimension aux1(1-mbc:maxm+mbc, maux, 3)
      dimension aux2(1-mbc:maxm+mbc, maux, 3)
      dimension aux3(1-mbc:maxm+mbc, maux, 3)
      dimension dtdx1d(1-mbc:maxm+mbc)
      dimension dtdy1d(1-mbc:maxm+mbc)
      dimension dtdz1d(1-mbc:maxm+mbc)
      dimension work(mwork)
      dimension method(7),mthlim(mwaves)
      external rpn3, rpt3
c
c     # partition work array into pieces needed for local storage in
c     # flux3 routine.  Find starting index of each piece:
c
      i0wave     = 1
      i0s        = i0wave     + (maxm+2*mbc)*meqn*mwaves
      i0amdq     = i0s        + (maxm+2*mbc)*mwaves
      i0apdq     = i0amdq     + (maxm+2*mbc)*meqn
      i0cqxx     = i0apdq     + (maxm+2*mbc)*meqn
      i0bmamdq   = i0cqxx     + (maxm+2*mbc)*meqn
      i0bmapdq   = i0bmamdq   + (maxm+2*mbc)*meqn
      i0bpamdq   = i0bmapdq   + (maxm+2*mbc)*meqn
      i0bpapdq   = i0bpamdq   + (maxm+2*mbc)*meqn
      i0cmamdq   = i0bpapdq   + (maxm+2*mbc)*meqn
      i0cmapdq   = i0cmamdq   + (maxm+2*mbc)*meqn
      i0cpamdq   = i0cmapdq   + (maxm+2*mbc)*meqn
      i0cpapdq   = i0cpamdq   + (maxm+2*mbc)*meqn
      i0cmamdq2  = i0cpapdq   + (maxm+2*mbc)*meqn
      i0cmapdq2  = i0cmamdq2  + (maxm+2*mbc)*meqn
      i0cpamdq2  = i0cmapdq2  + (maxm+2*mbc)*meqn
      i0cpapdq2  = i0cpamdq2  + (maxm+2*mbc)*meqn
      i0bmcqxx   = i0cpapdq2  + (maxm+2*mbc)*meqn
      i0bpcqxx   = i0bmcqxx   + (maxm+2*mbc)*meqn
      i0cmcqxx   = i0bpcqxx   + (maxm+2*mbc)*meqn
      i0cpcqxx   = i0cmcqxx   + (maxm+2*mbc)*meqn
      i0bmcmamdq = i0cpcqxx   + (maxm+2*mbc)*meqn
      i0bmcmapdq = i0bmcmamdq + (maxm+2*mbc)*meqn
      i0bpcmamdq = i0bmcmapdq + (maxm+2*mbc)*meqn
      i0bpcmapdq = i0bpcmamdq + (maxm+2*mbc)*meqn
      i0bmcpamdq = i0bpcmapdq + (maxm+2*mbc)*meqn
      i0bmcpapdq = i0bmcpamdq + (maxm+2*mbc)*meqn
      i0bpcpamdq = i0bmcpapdq + (maxm+2*mbc)*meqn
      i0bpcpapdq = i0bpcpamdq + (maxm+2*mbc)*meqn
      i0slope    = i0bpcpapdq + (maxm+2*mbc)*meqn
      iused      = i0slope + (maxm+2*mbc)*meqn*4 - 1
      mslope     = iused-i0slope+1
c
      if (iused.gt.mwork) then
	 write(6,*) '*** not enough work space in unsp3'
         write(6,*) '*** iused = ', iused, '   mwork =',mwork
	 stop 
      endif
c
      mcapa = method(6)
c
      cfl = 0.d0
      dtdx = dt/dx
      dtdy = dt/dy
      dtdz = dt/dz
c     
      do 10 k=1,mz+mbc
         do 10 j=1-mbc,my+mbc
            do 10 i=1-mbc,mx+mbc
               do 10 m=1,mvar
                  fm(m,i,j,k) = 0.d0
                  fp(m,i,j,k) = 0.d0
                  gm(m,i,j,k) = 0.d0
                  gp(m,i,j,k) = 0.d0
                  hm(m,i,j,k) = 0.d0
                  hp(m,i,j,k) = 0.d0
 10   continue
c
      if (mcapa.eq.0) then
c       # no capa array:
	 do 5 i=1-mbc,maxm+mbc
	    dtdx1d(i) = dtdx
	    dtdy1d(i) = dtdy
	    dtdz1d(i) = dtdz
 5       continue
      endif
c
c
c     # perform x-sweeps
c     ==================
c
      do 50 k = 0,mz+1
         do 50 j = 0,my+1
c     
            do 20 i = 1-mbc, mx+mbc
               do 20 m=1,meqn
c                 # copy data along a slice into 1d array:
 	          q1d(i,m) = qold(m,i,j,k)
 20         continue
c
            if (mcapa.gt.0)  then
               do 23 i = 1-mbc, mx+mbc
                  dtdx1d(i) = dtdx / aux(mcapa,i,j,k)
 23            continue
            endif
c
            if (maux .gt. 0)  then
               do 22 i = 1-mbc, mx+mbc
                  do 22 ma=1,maux
                     aux1(i,ma,1) = aux(ma,i,j-1,k-1)
                     aux1(i,ma,2) = aux(ma,i,j-1,k)
                     aux1(i,ma,3) = aux(ma,i,j-1,k+1)
                     aux2(i,ma,1) = aux(ma,i,j,k-1)
                     aux2(i,ma,2) = aux(ma,i,j,k)
                     aux2(i,ma,3) = aux(ma,i,j,k+1)
                     aux3(i,ma,1) = aux(ma,i,j+1,k-1)
                     aux3(i,ma,2) = aux(ma,i,j+1,k)
                     aux3(i,ma,3) = aux(ma,i,j+1,k+1)
 22            continue
            endif
c
c	    # Store the value of j and k along this slice in the common block
c           # comxyt in case it is needed in the Riemann solver (for
c           # variable coefficient problems)
c
	    jcom = j
            kcom = k
c     
c           # compute modifications fadd, gadd and hadd to fluxes along 
c           # this slice:
c
            call flux3(1,maxm,meqn,maux,mwaves,mbc,mx,
     &                 q1d,dtdx1d,dtdy,dtdz,aux1,aux2,aux3,
     &                 method,mthlim,
     &                 faddm,faddp,gaddm,gaddp,haddm,haddp,cfl1d,
     &                 work(i0wave),work(i0s),work(i0amdq),
     &                 work(i0apdq),work(i0cqxx),
     &                 work(i0bmamdq),work(i0bmapdq),
     &                 work(i0bpamdq),work(i0bpapdq),
     &                 work(i0cmamdq),work(i0cmapdq),
     &                 work(i0cpamdq),work(i0cpapdq),
     &                 work(i0cmamdq2),work(i0cmapdq2),
     &                 work(i0cpamdq2),work(i0cpapdq2),
     &                 work(i0bmcqxx),work(i0bpcqxx),
     &                 work(i0cmcqxx),work(i0cpcqxx),
     &                 work(i0bmcmamdq),work(i0bmcmapdq),
     &                 work(i0bpcmamdq),work(i0bpcmapdq),
     &                 work(i0bmcpamdq),work(i0bmcpapdq),
     &                 work(i0bpcpamdq),work(i0bpcpapdq),
     &                 work(i0slope),mslope,rpn3,rpt3)
c
	    cfl = dmax1(cfl,cfl1d)
c
c           # update arrays f, g and h
c
            do 30 i=1,mx+1
               do 30 m=1,meqn
                  fm(m,i,j,k) = fm(m,i,j,k) + faddm(i,m)
                  fp(m,i,j,k) = fp(m,i,j,k) + faddp(i,m)
                  
                  gm(m,i,j,k-1) = gm(m,i,j,k-1) + gaddm(i,m,1,-1)
                  gp(m,i,j,k-1) = gp(m,i,j,k-1) + gaddp(i,m,1,-1)
                  gm(m,i,j,k  ) = gm(m,i,j,k  ) + gaddm(i,m,1,0)
                  gp(m,i,j,k  ) = gp(m,i,j,k  ) + gaddp(i,m,1,0)
                  gm(m,i,j,k+1) = gm(m,i,j,k+1) + gaddm(i,m,1,1)
                  gp(m,i,j,k+1) = gp(m,i,j,k+1) + gaddp(i,m,1,1)
                  
                  gm(m,i,j+1,k-1) = gm(m,i,j+1,k-1) + gaddm(i,m,2,-1)
                  gp(m,i,j+1,k-1) = gp(m,i,j+1,k-1) + gaddp(i,m,2,-1)
                  gm(m,i,j+1,k  ) = gm(m,i,j+1,k  ) + gaddm(i,m,2,0)
                  gp(m,i,j+1,k  ) = gp(m,i,j+1,k  ) + gaddp(i,m,2,0)
                  gm(m,i,j+1,k+1) = gm(m,i,j+1,k+1) + gaddm(i,m,2,1)
                  gp(m,i,j+1,k+1) = gp(m,i,j+1,k+1) + gaddp(i,m,2,1)
                  
                  hm(m,i,j-1,k) = hm(m,i,j-1,k) + haddm(i,m,1,-1)
                  hp(m,i,j-1,k) = hp(m,i,j-1,k) + haddp(i,m,1,-1)
                  hm(m,i,j,  k) = hm(m,i,j,  k) + haddm(i,m,1,0)
                  hp(m,i,j,  k) = hp(m,i,j,  k) + haddp(i,m,1,0)
                  hm(m,i,j+1,k) = hm(m,i,j+1,k) + haddm(i,m,1,1)
                  hp(m,i,j+1,k) = hp(m,i,j+1,k) + haddp(i,m,1,1)
                  
                  hm(m,i,j-1,k+1) = hm(m,i,j-1,k+1) + haddm(i,m,2,-1)
                  hp(m,i,j-1,k+1) = hp(m,i,j-1,k+1) + haddp(i,m,2,-1)
                  hm(m,i,j,  k+1) = hm(m,i,j,  k+1) + haddm(i,m,2,0)
                  hp(m,i,j,  k+1) = hp(m,i,j,  k+1) + haddp(i,m,2,0)
                  hm(m,i,j+1,k+1) = hm(m,i,j+1,k+1) + haddm(i,m,2,1)
                  hp(m,i,j+1,k+1) = hp(m,i,j+1,k+1) + haddp(i,m,2,1)

 30         continue
c     
 50   continue
c
c
c     # perform y sweeps
c     ==================
c
c
      do 100 k = 0, mz+1
         do 100 i = 0, mx+1
c
            do 70 j = 1-mbc, my+mbc
               do 70 m=1,meqn
c                 # copy data along a slice into 1d array:
	          q1d(j,m) = qold(m,i,j,k)
 70         continue
c
            if (mcapa.gt.0)  then
               do 71 j = 1-mbc, my+mbc
                  dtdy1d(j) = dtdy / aux(mcapa,i,j,k)
 71            continue
            endif
c
            if (maux .gt. 0)  then
               do 72 j = 1-mbc, my+mbc
                  do 72 ma=1,maux
                     aux1(j,ma,1) = aux(ma,i-1,j,k-1)
                     aux1(j,ma,2) = aux(ma,i  ,j,k-1)
                     aux1(j,ma,3) = aux(ma,i+1,j,k-1)
                     aux2(j,ma,1) = aux(ma,i-1,j,k)
                     aux2(j,ma,2) = aux(ma,i  ,j,k)
                     aux2(j,ma,3) = aux(ma,i+1,j,k)
                     aux3(j,ma,1) = aux(ma,i-1,j,k+1)
                     aux3(j,ma,2) = aux(ma,i  ,j,k+1)
                     aux3(j,ma,3) = aux(ma,i+1,j,k+1)
 72            continue
            endif
c
c	    # Store the value of i and k along this slice in the common block
c           # comxyzt in case it is needed in the Riemann solver (for
c           # variable coefficient problems)
c
            icom = i
            kcom = k  
c		   
c           # compute modifications fadd, gadd and hadd to fluxes along this 
c           # slice:
c
            call flux3(2,maxm,meqn,maux,mwaves,mbc,my,
     &                 q1d,dtdy1d,dtdz,dtdx,aux1,aux2,aux3,
     &                 method,mthlim,
     &                 faddm,faddp,gaddm,gaddp,haddm,haddp,cfl1d,
     &                 work(i0wave),work(i0s),work(i0amdq),
     &                 work(i0apdq),work(i0cqxx),
     &                 work(i0bmamdq),work(i0bmapdq),
     &                 work(i0bpamdq),work(i0bpapdq),
     &                 work(i0cmamdq),work(i0cmapdq),
     &                 work(i0cpamdq),work(i0cpapdq),
     &                 work(i0cmamdq2),work(i0cmapdq2),
     &                 work(i0cpamdq2),work(i0cpapdq2),
     &                 work(i0bmcqxx),work(i0bpcqxx),
     &                 work(i0cmcqxx),work(i0cpcqxx),
     &                 work(i0bmcmamdq),work(i0bmcmapdq),
     &                 work(i0bpcmamdq),work(i0bpcmapdq),
     &                 work(i0bmcpamdq),work(i0bmcpapdq),
     &                 work(i0bpcpamdq),work(i0bpcpapdq),
     &                 work(i0slope),mslope,rpn3,rpt3)
c
            cfl = dmax1(cfl,cfl1d)
c
c           # Note that the roles of the flux updates are changed.
c           # fadd - modifies the g-fluxes
c           # gadd - modifies the h-fluxes
c           # hadd - modifies the f-fluxes

            do 80 j=1,my+1
               do 80 m=1,meqn
                  gm(m,i,j,k) = gm(m,i,j,k) + faddm(j,m)
                  gp(m,i,j,k) = gp(m,i,j,k) + faddp(j,m)
                  
                  fm(m,i,j,k-1) = fm(m,i,j,k-1) + haddm(j,m,1,-1)
                  fp(m,i,j,k-1) = fp(m,i,j,k-1) + haddp(j,m,1,-1)
                  fm(m,i,j,k  ) = fm(m,i,j,k  ) + haddm(j,m,1,0)
                  fp(m,i,j,k  ) = fp(m,i,j,k  ) + haddp(j,m,1,0)
                  fm(m,i,j,k+1) = fm(m,i,j,k+1) + haddm(j,m,1,1)
                  fp(m,i,j,k+1) = fp(m,i,j,k+1) + haddp(j,m,1,1)
                  
                  fm(m,i+1,j,k-1) = fm(m,i+1,j,k-1) + haddm(j,m,2,-1)
                  fp(m,i+1,j,k-1) = fp(m,i+1,j,k-1) + haddp(j,m,2,-1)
                  fm(m,i+1,j,k  ) = fm(m,i+1,j,k  ) + haddm(j,m,2,0)
                  fp(m,i+1,j,k  ) = fp(m,i+1,j,k  ) + haddp(j,m,2,0)
                  fm(m,i+1,j,k+1) = fm(m,i+1,j,k+1) + haddm(j,m,2,1)
                  fp(m,i+1,j,k+1) = fp(m,i+1,j,k+1) + haddp(j,m,2,1)
                  
                  hm(m,i-1,j,k) = hm(m,i-1,j,k) + gaddm(j,m,1,-1)
                  hp(m,i-1,j,k) = hp(m,i-1,j,k) + gaddp(j,m,1,-1)
                  hm(m,i,  j,k) = hm(m,i,  j,k) + gaddm(j,m,1,0)
                  hp(m,i,  j,k) = hp(m,i,  j,k) + gaddp(j,m,1,0)
                  hm(m,i+1,j,k) = hm(m,i+1,j,k) + gaddm(j,m,1,1)
                  hp(m,i+1,j,k) = hp(m,i+1,j,k) + gaddp(j,m,1,1)
                  
                  hm(m,i-1,j,k+1) = hm(m,i-1,j,k+1) + gaddm(j,m,2,-1)
                  hp(m,i-1,j,k+1) = hp(m,i-1,j,k+1) + gaddp(j,m,2,-1)
                  hm(m,i,  j,k+1) = hm(m,i,  j,k+1) + gaddm(j,m,2,0)
                  hp(m,i,  j,k+1) = hp(m,i,  j,k+1) + gaddp(j,m,2,0)
                  hm(m,i+1,j,k+1) = hm(m,i+1,j,k+1) + gaddm(j,m,2,1)
                  hp(m,i+1,j,k+1) = hp(m,i+1,j,k+1) + gaddp(j,m,2,1)
       
 80         continue
c
 100  continue
c
c
c     # perform z sweeps
c     ==================
c
c
      do 150 j = 0, my+1
         do 150 i = 0, mx+1
c     
            do 110 k = 1-mbc, mz+mbc
               do 110 m=1,meqn
c                 # copy data along a slice into 1d array:
	          q1d(k,m) = qold(m,i,j,k)
 110        continue
c     
            if (mcapa.gt.0)  then
               do 130 k = 1-mbc, mz+mbc
                  dtdz1d(k) = dtdz / aux(mcapa,i,j,k)
 130           continue
            endif
c
            if (maux .gt. 0)  then
               do 131 k = 1-mbc, mz+mbc
                  do 131 ma=1,maux
                     aux1(k,ma,1) = aux(ma,i-1,j-1,k)
                     aux1(k,ma,2) = aux(ma,i-1,j  ,k)
                     aux1(k,ma,3) = aux(ma,i-1,j+1,k)
                     aux2(k,ma,1) = aux(ma,i  ,j-1,k)
                     aux2(k,ma,2) = aux(ma,i  ,j  ,k)
                     aux2(k,ma,3) = aux(ma,i  ,j+1,k)
                     aux3(k,ma,1) = aux(ma,i+1,j-1,k)
                     aux3(k,ma,2) = aux(ma,i+1,j  ,k)
                     aux3(k,ma,3) = aux(ma,i+1,j+1,k)
 131           continue
            endif
c
c	    # Store the value of i and j along this slice in the common block
c           # comxyzt in case it is needed in the Riemann solver (for
c           # variable coefficient problems)
c
            icom = i
            jcom = j  
c		   
c           # compute modifications fadd, gadd and hadd to fluxes along this 
c           # slice:
c
            call flux3(3,maxm,meqn,maux,mwaves,mbc,mz,
     &                 q1d,dtdz1d,dtdx,dtdy,aux1,aux2,aux3,
     &                 method,mthlim,
     &                 faddm,faddp,gaddm,gaddp,haddm,haddp,cfl1d,
     &                 work(i0wave),work(i0s),work(i0amdq),
     &                 work(i0apdq),work(i0cqxx),
     &                 work(i0bmamdq),work(i0bmapdq),
     &                 work(i0bpamdq),work(i0bpapdq),
     &                 work(i0cmamdq),work(i0cmapdq),
     &                 work(i0cpamdq),work(i0cpapdq),
     &                 work(i0cmamdq2),work(i0cmapdq2),
     &                 work(i0cpamdq2),work(i0cpapdq2),
     &                 work(i0bmcqxx),work(i0bpcqxx),
     &                 work(i0cmcqxx),work(i0cpcqxx),
     &                 work(i0bmcmamdq),work(i0bmcmapdq),
     &                 work(i0bpcmamdq),work(i0bpcmapdq),
     &                 work(i0bmcpamdq),work(i0bmcpapdq),
     &                 work(i0bpcpamdq),work(i0bpcpapdq),
     &                 work(i0slope),mslope,rpn3,rpt3)
c
	    cfl = dmax1(cfl,cfl1d)
c
c           # Note that the roles of the flux updates are changed.
c           # fadd - modifies the h-fluxes
c           # gadd - modifies the f-fluxes
c           # hadd - modifies the g-fluxes
c
            do 120 k=1,mz+1
               do 120 m=1,meqn
                  hm(m,i,j,k) = hm(m,i,j,k) + faddm(k,m)
                  hp(m,i,j,k) = hp(m,i,j,k) + faddp(k,m)
                  
                  fm(m,i,j-1,k) = fm(m,i,j-1,k) + gaddm(k,m,1,-1)
                  fp(m,i,j-1,k) = fp(m,i,j-1,k) + gaddp(k,m,1,-1)
                  fm(m,i,j,  k) = fm(m,i,j,  k) + gaddm(k,m,1,0)
                  fp(m,i,j,  k) = fp(m,i,j,  k) + gaddp(k,m,1,0)
                  fm(m,i,j+1,k) = fm(m,i,j+1,k) + gaddm(k,m,1,1)
                  fp(m,i,j+1,k) = fp(m,i,j+1,k) + gaddp(k,m,1,1)
                     
                  fm(m,i+1,j-1,k) = fm(m,i+1,j-1,k) + gaddm(k,m,2,-1)
                  fp(m,i+1,j-1,k) = fp(m,i+1,j-1,k) + gaddp(k,m,2,-1)
                  fm(m,i+1,j,  k) = fm(m,i+1,j,  k) + gaddm(k,m,2,0)
                  fp(m,i+1,j,  k) = fp(m,i+1,j,  k) + gaddp(k,m,2,0)
                  fm(m,i+1,j+1,k) = fm(m,i+1,j+1,k) + gaddm(k,m,2,1)
                  fp(m,i+1,j+1,k) = fp(m,i+1,j+1,k) + gaddp(k,m,2,1)

                  gm(m,i-1,j,k) = gm(m,i-1,j,k) + haddm(k,m,1,-1)
                  gp(m,i-1,j,k) = gp(m,i-1,j,k) + haddp(k,m,1,-1)
                  gm(m,i,  j,k) = gm(m,i,  j,k) + haddm(k,m,1,0)
                  gp(m,i,  j,k) = gp(m,i,  j,k) + haddp(k,m,1,0)
                  gm(m,i+1,j,k) = gm(m,i+1,j,k) + haddm(k,m,1,1)
                  gp(m,i+1,j,k) = gp(m,i+1,j,k) + haddp(k,m,1,1)
                  
                  gm(m,i-1,j+1,k) = gm(m,i-1,j+1,k) + haddm(k,m,2,-1)
                  gp(m,i-1,j+1,k) = gp(m,i-1,j+1,k) + haddp(k,m,2,-1)
                  gm(m,i,  j+1,k) = gm(m,i,  j+1,k) + haddm(k,m,2,0)
                  gp(m,i,  j+1,k) = gp(m,i,  j+1,k) + haddp(k,m,2,0)
                  gm(m,i+1,j+1,k) = gm(m,i+1,j+1,k) + haddm(k,m,2,1)
                  gp(m,i+1,j+1,k) = gp(m,i+1,j+1,k) + haddp(k,m,2,1)
c     
 120        continue
c
 150  continue
c
      do 200 k=1,mz               
         do 200 j=1,my               
            do 200 i=1,mx             
               do 200 m=1,meqn
                  
                  if (mcapa.gt.0) then
c     #              with capa array.
                     qold(m,i,j,k) = qold(m,i,j,k) 
     &                    - (dtdx * (fm(m,i+1,j,k) - fp(m,i,j,k))
     &                    +  dtdy * (gm(m,i,j+1,k) - gp(m,i,j,k))
     &                    +  dtdz * (hm(m,i,j,k+1) - hp(m,i,j,k))) / 
     &                    aux(mcapa,i,j,k)
                     
c     # no capa array.  Standard flux differencing:
                  else
                     qold(m,i,j,k) = qold(m,i,j,k) 
     &                    - dtdx * (fm(m,i+1,j,k) - fp(m,i,j,k)) 
     &                    - dtdy * (gm(m,i,j+1,k) - gp(m,i,j,k)) 
     &                    - dtdz * (hm(m,i,j,k+1) - hp(m,i,j,k)) 
                  endif

 200  continue

      return
      end
 


Quickstart     Users Guide     Programmers Reference     Installation      Examples     Download



AMROC Main      Home      Contact
last update: 06/01/04